TRI FILE COPY

ESD ACCE	SS	D	4	ST
TRI Call No.	_	-	0 1	
Copy No.	1	of		cke

ESD RECORD COPY

RETURN TO

SCIENTIFIC & TECHNICAL INFORMATION DIVISION

(TRI), Building 1210

Technical Note

1971-32

A New Geometrical Theorem
Discovered with the Aid
of a Computer

W. L. Black H. C. Howland B. Howland

21 June 1971

Prepared under Electronic Systems Division Contract F19628-70-C-0230 by

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY

A NEW GEOMETRICAL THEOREM DISCOVERED WITH THE AID OF A COMPUTER

W. L. BLACK

Division 6

H. C. HOWLAND

Cornell University
Division of Biological Sciences
Ithaca, New York 14850

B. HOWLAND

Group 63

TECHNICAL NOTE 1971-32

21 JUNE 1971

Approved for public release; distribution unlimited.

The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the support of the Department of the Air Force under Contract F19628-70-C-0230.

This report may be reproduced to satisfy needs of U.S. Government agencies.

ABSTRACT

In the course of a computer study of a new form of ball bearing, a curious invariance was noted. This led to a new theorem in the geometry of circles. A proof for this theorem, together with a useful lemma, is the subject of this Technical Note.

Accepted for the Air Force Joseph R. Waterman, Lt. Col., USAF Chief, Lincoln Laboratory Project Office

		,
•		
		•

A NEW GEOMETRICAL THEOREM DISCOVERED WITH THE AID OF A COMPUTER

Let Γ and $\widetilde{\Gamma}$ be two circles in euclidean 3-space, R^3 . Suppose there is a number x such that: (1) every point on either circle is distance x from exactly two points on the other circle. We can then select a point Z_1 on Γ and draw a zig-zag line between the two circles as follows:

It may happen (illustrated for the case n=3 in Fig. 1) that $Z_{n+1}=Z_1$. We show that if this occurs, the zig-zag line can be started at <u>any</u> point on Γ and it will still close.

This remarkable fact was observed while performing certain calculations about ball bearings on a computer 1 . The theorem bears a superficial resemblance to Steiner's Porism 2 but cannot be proved the same way.

Condition (1) is not as formidable as it may appear. If both circles lie in the same plane, with radii $\, r \,$ and $\, r \,$ and with centers separated by $\, \delta \,$, elementary calculus shows that (1) is equivalent to the two inequalities:

$$|\mathbf{r} - \overline{\mathbf{r}}| < \mathbf{x} - \delta$$
 $\mathbf{x} + \delta < \mathbf{r} + \overline{\mathbf{r}}$

Thus suitable x's will exist provided the smaller circle encloses the center of the larger one.

Fig. 1. Each straight line has length x, n = 3.

Fig. 2. Illustrating the notation used in the computation of f.

The proof proceeds as follows: Suppose for some choice of Z_1 , say $Z_1 = p$, $Z_{n+1} = Z_1$. We parametrize Γ by s, the directed arc length measured from p. Thus we can view Z_1 , and thus Z_{n+1} , and ultimately t, the arc length from p to Z_{n+1} as functions of s. Below we show that there is a smooth function f of g and g with properties:

(i.)
$$f(s,s) = 1$$
 for all s
(ii.) $f(s,t) = \frac{dt}{ds}$

Application of a well known uniqueness theorem³ assures us that this ordinary differential equation:

$$\frac{dt}{ds} = f(s,t)$$

$$t(o) = 0$$

has only one solution. By (i), t(s) = s is the solution. But this implies that $Z_{n+1} = Z_1$ for all Z_1 .

In constructing f we will need the following lemma:

<u>Lemma</u>: Let B, n, Z_1 and Z_2 be vectors in R^3 , satisfying:

(a.)
$$|y_1| = |y_2|$$

(b.) $|B + y_1| = |B + y_2|$
(c.) $n \cdot y_1 = n \cdot y_2$
(d.) $y_1 + y_2$

Then:

$$B \times n \cdot (y_1 + y_2) = 0 .$$

<u>Proof:</u> If B and n are dependent the result is obvious. If not, by squaring (b) and (a) and taking the difference we obtain:

(e.) B •
$$y_1 = B • y_2$$

In conjunction with (c), (e) shows that y_1 and y_2 have the same orthogonal projection on the plane spanned by B and n. By (a) and (d) the components of y_1 and y_2 normal to this plane must be equal and opposite, so $y_1 + y_2$ lies in the B,n plane. From this the conclusion is evident.

We can now compute f. We will use the following notation:

n is the unit normal to circle Γ

$$\widetilde{n}$$
 " " $\widetilde{\Gamma}$

 y_i is the vector from the center of Γ to Z_i

 \widetilde{y}_i is the <u>negative</u> of the vector from the center of $\widetilde{\Gamma}$ to \widetilde{Z}_i .

 Δ is the vector from the center of $\widetilde{\Gamma}$ to the center of Γ .

Figure two illustrates this notation. Imagine a slight motion of y_1 along the circle. Since dy_1 is perpendicular to both n and y_1 we can write:

$$dy_1 = n \times \frac{y_1}{|y_1|} |dy_1| \tag{2}$$

As \mathbf{y}_1 moves, $\widetilde{\mathbf{y}}_1$ also must move, keeping

$$|\Delta + y_1 + \widetilde{y}_1| = x \tag{3}$$

Squaring (3) and differentiating gives:

$$(\Delta + y_1 + \widetilde{y}_1) \cdot (dy_1 + d\widetilde{y}_1) = 0$$
 (4)

Substituting into (4), (2) and (5) where:

$$d\widetilde{y}_{1} = \widetilde{n} \times \frac{\widetilde{y}_{1}}{|y_{1}|} |d\widetilde{y}_{1}|$$
 (5)

gives:

$$(\Delta + \widetilde{y}_1) \cdot n \times \frac{y_1}{|y_1|} |dy_1| + (\Delta + y_1) \cdot \widetilde{n} \times \frac{\widetilde{y}_1}{|\widetilde{y}_1|} |d\widetilde{y}_1| = 0 . (6)$$

Thus:

$$\frac{\left|d\widetilde{y}_{1}\right|}{\left|dy_{1}\right|} = -\frac{\left|\widetilde{y}_{1}\right| (\Delta + \widetilde{y}_{1}) \cdot n \times y_{1}}{\left|y_{1}\right| (\Delta + y_{1}) \cdot \widetilde{n} \times \widetilde{y}_{1}} . \tag{7}$$

Similarly,

$$\frac{\left|dy_{2}\right|}{\left|d\widetilde{y}_{1}\right|} = -\frac{\left|y_{2}\right| (\Delta + y_{2}) \cdot \widetilde{n} \times \widetilde{y}_{1}}{\left|\widetilde{y}_{1}\right| (\Delta + \widetilde{y}_{1}) \cdot n \times y_{2}}$$
(8)

Multiplying (7) by (8) and using the lemma in the forms:

$$(\Delta + \widetilde{y}_1) \cdot n \times y_1 = - (\Delta + \widetilde{y}_1) \cdot n \times y_2$$

 $(\Delta + y_2) \cdot \widetilde{n} \times \widetilde{y}_1 = - (\Delta + y_2) \cdot \widetilde{n} \times \widetilde{y}_2$

gives:

$$\frac{\left|dy_{2}\right|}{\left|dy_{1}\right|} = \frac{(\Delta + y_{2}) \cdot \widetilde{n} \times \widetilde{y}_{2}}{(\Delta + y_{1}) \cdot \widetilde{n} \times \widetilde{y}_{1}} \qquad (9)$$

Multiplying n similar expressions gives:

$$\frac{dt}{ds} = \frac{\left| dy_{n+1} \right|}{\left| dy_{1} \right|} = \frac{(\Delta + y_{n+1}) \cdot \widetilde{n} \times \widetilde{y}_{n+1}}{(\Delta + y_{1}) \cdot \widetilde{n} \times \widetilde{y}_{1}} = f(s,t)$$

Clearly if $Z_{n+1} = Z_1$, then $y_{n+1} = y_1$ and $\tilde{y}_{n+1} = \tilde{y}_1$, whence:

$$f(s,s) = 1 .$$

This completes the proof.

REFERENCES

- 1. Quarterly Progress Report No. 101, Research Laboratory of Electronics, Massachusetts Institute of Technology, p. 268 (15 April 1971).
- 2. H. S. M. Coxeter and M. C. Greitzer, Geometry Revisited, Random House, pp. 124, 125 (1967).
- 3. E. A. Coddington and N. Levinson, <u>Theory of Ordinary Differential Equations</u>, McGraw-Hill, New York, p. 10 (1955).

ACKNOWLEDGMENT

We wish to thank Mr. Fred Zimnoch for his programming assistance.

Security Classification

DOCUMENT CONTROL DATA - R&D							
(Security classification of title, body of abstract and indexing annotat. 1. ORIGINATING ACTIVITY (Corporate author)	ion must be e						
		Unclassifie	RITY CLASSIFICATION				
Lincoln Laboratory, M.I.T.		2b. GROUP None					
3. REPORT TITLE							
A New Geometrical Theorem Discovered with the Aid of a Computer							
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical Note							
5. AUTHOR(S) (Last name, first name, initial)							
Black, William L. Howland, Howard C.		Howland, Bradfor	d				
6. REPORT DATE	7a. TOTAL	NO. OF PAGES	7b. NO. OF REFS				
21 June 1971		12	3				
	9a, ORIGII	NATOR'S REPORT	NUMBER(S)				
8a. CONTRACT OR GRANT NO. F19628-70-C-0230	Technical Note 1971-32						
b. PROJECT NO. 649L		R REPORT NO(S) (Any other numbers that may be ed this report)					
c. d.	ESD-TR-71-192						
10. AVAILABILITY/LIMITATION NOTICES							
Approved for public release; distribution unlimited.							
11. SUPPLEMENTARY NOTES	12. SPONS	ORING MILITARY A	CTIVITY				
None	Air Force Sys		ns Command, USAF				
In the course of a computer study of a new form of ball bearing, a curious invariance was noted. This led us to a new theorem in the geometry of circles. A proof for this theorem, together with a useful lemma, is the subject of this Technical Note.							
geometry of circles theorem		lemma computer study					

